CLASSIFICATION OF MATHEMATHICAL MODELS FOR MODELLING THE DYNAMICS OF MACROECONOMIC SYSTEMS

Authors

  • Olga MANTALIUK Khmelnytskyi National University

DOI:

https://doi.org/10.31891/mdes/2023-10-26

Keywords:

modeling the dynamics of macroeconomic systems, nonlinear dynamics, synergetic approach, decision-making systems, systems of differential equations, discrete iterative maps

Abstract

The complexity of modern economic systems, the nonlinearity of the processes occurring in them, the uncertainty of the external conditions of their functioning requires the application to the study of these systems of a methodological apparatus that would adequately reflect the object of research, allow making reliable forecasts of its development and provide the necessary information for making effective decisions regarding the management of this object. Such a tool is the theory of nonlinear dynamics, which since the 80s of the last century has been widely used in the modeling of natural and technical systems. On the other hand, the use of classical nonlinear dynamic mathematical models, such as, for example, the spider-like model or the Solow model, remains relevant in economic research. This article proposes a classification of mathematical models and methods that can be applied to the study of the dynamics of various complex nonlinear dynamic economic systems. According to the author, the developed classification can significantly reduce the dimension of the set of options for choosing mathematical models and methods for describing and studying a complex nonlinear dynamic economic system, become the basis for creating a bank of models and has the potential to be useful for development of macroeconomic policy measures. In turn, the use of model bases by decision makers is devoted to result in an increase in the adequacy level of applied models of the research object, a rise in the reliability of forecasts and, finally, an improvement in management efficiency and a decrease in losses from making inappropriate management decisions.

References

Andreishyna N. B. Analiz suchasnykh pidkhodiv do modeliuvannia ekonomichnoi dynamiky [Elektronnyi resurs] / N.B. Andreishyna // Investytsii: praktyka ta dosvid. – 2015. – № 7. S. 45–48. – Rezhym dostupu: http://www.investplan.com.ua/pdf/7_2015/11.pdf

Vitlinskyi V.V. Modeliuvannia ekonomiky : [Navch. posib.] / V. V. Vitlinskyi. – K. : KNEU, 2003. – 408 s.

Derbentsev V.D., Serdiuk O.A., Soloviov V.M., Sharapov O.D. Synerhetychni ta ekonofizychni metody doslidzhennia dynamichnykh ta strukturnykh kharakterystyk ekonomichnykh system: Monohrafiia. – Cherkasy: Brama-Ukraina, 2010. – 287 s.

Koliada Yu. V. Adaptyvna paradyhma modeliuvannia ekonomichnoi dynamiky : monohrafiia / Yu. V. Koliada. — 2-he vyd., pererob. i dop. — K. : KNEU, 2019. — 367 s.

Klebanova T.S. Modeliuvannia ekonomichnoi dynamiky: Uchbovyi posibnyk/ Klebanva T.S., Dubrovina N.A., Poliakova O.Iu., Raievnieva O.V., Milov O.V., Serhiienko Ye.A. – Kharkiv, Vydavnychyi .dim «INZhEK», 2005 – 244 s.

L. A. Aguirre, C. Letellier. Modeling Nonlinear Dynamics and Chaos: A Review. – Hindawi Publishing Corporation/ Mathematical Problems in Engineering, Volume 2009, – URL: ttps://www.researchgate.net/publication/26623275_Modeling_Nonlinear_Dynamics_and_Chaos_A_Review

Mankiv H.N. Makroekonomika. Pidruchnyk dlia Ukrainy / Mankiv, Gregori N. Makroekonomika /Per. z anhl.; Nauk. red. per. S. Panchyshyna. – K: Osnovy, 2000. – 588 s.

Ramazanov S. K., Rohoza M. Ye., Musaieva E. K. Neliniini modeli ta analiz skladnykh system. - 3-ye vydannia, zi zminamy, Poltava, RVV PUET, 2011. – 517 s.

P. Richmond, J. Mimkes, S. Hutzler. Econophysics and Physical Economics. Oxford University Press, New York, 2013. – 243 p. URL: file:///C:/Users/User/Downloads/Modeling_Nonlinear_Dynamics_and_Chaos_A_Review.pdf

Published

2023-12-28

How to Cite

MANTALIUK О. (2023). CLASSIFICATION OF MATHEMATHICAL MODELS FOR MODELLING THE DYNAMICS OF MACROECONOMIC SYSTEMS . MODELING THE DEVELOPMENT OF THE ECONOMIC SYSTEMS, (4), 196–200. https://doi.org/10.31891/mdes/2023-10-26